Questions concerning matrix algebras and invariance of spectrum
نویسندگان
چکیده
Let A and B be unital Banach algebras with A a subalgebra of B. Denote the algebra of all n×n matrices with entries from A by Mn(A). In this paper we prove some results concerning the open question: If A is inverse closed in B, then is Mn(A) inverse closed in Mn(B)? We also study related questions in the setting where A is a symmetric Banach *-algebra.
منابع مشابه
CONTINUITY IN FUNDAMENTAL LOCALLY MULTIPLICATIVE TOPOLOGICAL ALGEBRAS
Abstract. In this paper, we first derive specific results concerning the continuity and upper semi-continuity of the spectral radius and spectrum functions on fundamental locally multiplicative topological algebras. We continue our investigation by further determining the automatic continuity of linear mappings and homomorphisms in these algebras.
متن کاملArens Regularity and Weak Amenability of Certain Matrix Algebras
Motivated by an Arens regularity problem, we introduce the concepts of matrix Banach space and matrix Banach algebra. The notion of matrix normed space in the sense of Ruan is a special case of our matrix normed system. A matrix Banach algebra is a matrix Banach space with a completely contractive multiplication. We study the structure of matrix Banach spaces and matrix Banach algebras. Then we...
متن کاملUniform Convergence to a Left Invariance on Weakly Compact Subsets
Let $left{a_alpharight}_{alphain I}$ be a bounded net in a Banach algebra $A$ and $varphi$ a nonzero multiplicative linear functional on $A$. In this paper, we deal with the problem of when $|aa_alpha-varphi(a)a_alpha|to0$ uniformly for all $a$ in weakly compact subsets of $A$. We show that Banach algebras associated to locally compact groups such as Segal algebras and $L^1$-algebras are resp...
متن کاملNILPOTENT GRAPHS OF MATRIX ALGEBRAS
Let $R$ be a ring with unity. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set ~$Z_N(R)^* = {0neq x in R | xy in N(R) for some y in R^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in N(R)$, or equivalently, $yx in N(R)$, where $N(R)$ denoted the nilpotent elements of $R$. Recently, it has been proved that if $R$ is a left A...
متن کامل